where VRtot is the average total ventilation rate in dscm/min for the 3 test runs as determined at the outlet by means of the Method 306 testing; IDAi is the total inlet area for all ducts associated with affected sources; IAtotal is the sum of all inlet duct areas from both affected sources and sources not affected by this subchapter; and VRinlet is the total ventilation rate from all inlet ducts associated with affected sources.
[SIGMA]VRinlet x EL x 60 minutes/hour = AMRsys Equation (2)
where [SIGMA] VRinlet is the total ventilation rate in dscm/min from the affected sources, and EL is the applicable emission limitation froms. NR 463.04 in mg/dscm. The allowable mass emission rate (AMRsys) calculated from equation 2 shall be equal to or more than the outlet 3-run average mass emission rate determined from Method 306 testing in order for the source to be in compliance with the standard.
where VRtot is the average total ventilation rate in dscm/min for the 3 test runs as determined at the outlet by means of the Method 306 testing; IDAi,a is the total inlet duct area for all ducts conveying chromic acid from each type of affected source performing the same operation, or each type of affected source subject to the same emission limitation; IAtotal is the sum of all duct areas from both affected sources and sources not affected by this subchapter; and VRinlet,a is the total ventilation rate from all inlet ducts conveying chromic acid from each type of affected source performing the same operation, or each type of affected source subject to the same emission limitation.
where "hc" applies to the total of ventilation rates for all hard chromium electroplating tanks subject to the same emission limitation, "dc" applies to the total of ventilation rates for the decorative chromium electroplating tanks, "ca" applies to the total of ventilation rates for the chromium anodizing tanks, and EL is the applicable emission limitation from s. NR 463.04 in mg/dscm. There are 2 equations for hard chromium electroplating tanks because different emission limitations may apply (for example, a new tank versus an existing, small tank).
The allowable mass emission rate calculated from equation 8 shall be equal to or more than the outlet 3-run average mass emission rate determined from Method 306 testing in order for the source to be in compliance with the standards in s. NR 463.04.
MAMER = ETSA x K x 0.015 mg/dscm Equation (9)
where:
MAMER is the alternative emission rate for enclosed hard chromium electroplating tanks in mg/hr
ETSA is the hard chromium electroplating tank surface area in square feet (ft2)
K is the conversion factor, 425 dscm/(ft2 x hr)
MAMER = ETSA x K x 0.03 mg/dscm Equation (10)
where:
MAMER is the alternative emission rate for enclosed hard chromium electroplating tanks in mg/hr
ETSA is the hard chromium electroplating tank surface area in square feet (ft2)
K is the conversion factor, 425 dscm/(ft2 x hr)
Wis. Admin. Code Department of Natural Resources NR 463.09