Vmax = (XH2-K1)* K2
Where:
Vmax = Maximum permitted velocity, m/sec.
K1 = Constant, 6.0 volume-percent hydrogen.
K2 = Constant, 3.9(m/sec)/volume-percent hydrogen.
XH2 = The volume-percent of hydrogen, on a wet basis, as calculated by using the American Society for Testing and Materials (ASTM) Method D1946-77. (Incorporated by reference as specified in § 63.14 ).
Where:
HT = Net heating value of the sample, MJ/scm; where the net enthalpy per mole of offgas is based on combustion at 25 °C and 760 mm Hg, but the standard temperature for determining the volume corresponding to one mole is 20 °C.
K = Constant =
where the standard temperature for (g-mole/scm) is 20 °C.
Ci = Concentration of sample component i in ppmv on a wet basis, as measured for organics by Test Method 18 and measured for hydrogen and carbon monoxide by American Society for Testing and Materials (ASTM) D1946-77 or 90 (Reapproved 1994) (incorporated by reference as specified in § 63.14 ).
Hi = Net heat of combustion of sample component i, kcal/g-mole at 25 °C and 760 mm Hg. The heats of combustion may be determined using ASTM D2382-76 or 88 or D4809-95 (incorporated by reference as specified in § 63.14 ) if published values are not available or cannot be calculated.
n = Number of sample components.
Log10(Vmax) = (HT + 28.8)/31.7
Where:
Vmax = Maximum permitted velocity, m/sec.
28.8 = Constant.
31.7 = Constant.
HT = The net heating value as determined in paragraph (b)(6) of this section.
Vmax = 8.71 + 0.708(HT)
Where:
Vmax = Maximum permitted velocity, m/sec.
8.71 = Constant.
0.708 = Constant.
HT = The net heating value as determined in paragraph (b)(6)(ii) of this section.
Where:
Edic = Mass flow rate for the daily instrument check, grams per hour
xi = Mass fraction of detectable chemical(s) i seen by the optical gas imaging instrument, within the distance to be used in paragraph (e)(2)(iv)(B) of this section, at or below the standard detection sensitivity level, Esds.
Esds = Standard detection sensitivity level from Table 1 to subpart A, grams per hour
k = Total number of detectable chemicals emitted from the leaking equipment and seen by the optical gas imaging instrument.
40 C.F.R. §63.11