Action level means a concentration of airborne respirable crystalline silica of 25 [MICRO]g/m3, calculated as an 8-hour TWA.
Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.
Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee.
Competent person means an individual who is capable of identifying existing and foreseeable respirable crystalline silica hazards in the workplace and who has authorization to take prompt corrective measures to eliminate or minimize them. The competent person must have the knowledge and ability necessary to fulfill the responsibilities set forth in paragraph (g) of this section.
Employee exposure means the exposure to airborne respirable crystalline silica that would occur if the employee were not using a respirator.
High-efficiency particulate air [HEPA] filter means a filter that is at least 99.97 percent efficient in removing mono-dispersed particles of 0.3 micrometers in diameter.
Objective data means information, such as air monitoring data from industry-wide surveys or calculations based on the composition of a substance, demonstrating employee exposure to respirable crystalline silica associated with a particular product or material or a specific process, task, or activity. The data must reflect workplace conditions closely resembling or with a higher exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer's current operations.
Physician or other licensed health care professional [PLHCP] means an individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows him or her to independently provide or be delegated the responsibility to provide some or all of the particular health care services required by paragraph (h) of this section.
Respirable crystalline silica means quartz, cristobalite, and/or tridymite contained in airborne particles that are determined to be respirable by a sampling device designed to meet the characteristics for respirable-particle-size-selective samplers specified in the International Organization for Standardization (ISO) 7708:1995: Air Quality-Particle Size Fraction Definitions for Health-Related Sampling.
Specialist means an American Board Certified Specialist in Pulmonary Disease or an American Board Certified Specialist in Occupational Medicine.
This section means this respirable crystalline silica standard, 29 CFR 1926.1153 .
Table 1-Specified Exposure Control Methods When Working With Materials Containing Crystalline Silica
Equipment/task | Engineering and work practice control methods | Required respiratory protection and minimum assigned protection factor (APF) | |
[LESS THAN EQUAL TO]4 hours/shift | [GREATER THAN]4 hours/shift | ||
(i) Stationary masonry saws | Use saw equipped with integrated water delivery system that continuously feeds water to the blade | None | None. |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
(ii) Handheld power saws (any blade diameter) | Use saw equipped with integrated water delivery system that continuously feeds water to the blade | ||
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions: | |||
-When used outdoors | None | APF 10. | |
-When used indoors or in an enclosed area | APF 10 | APF 10. | |
(iii) Handheld power saws for cutting fiber-cement board (with blade diameter of 8 inches or less) | For tasks performed outdoors only: Use saw equipped with commercially available dust collection system Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | None | None. |
Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency | |||
(iv) Walk-behind saws | Use saw equipped with integrated water delivery system that continuously feeds water to the blade | ||
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions: | |||
-When used outdoors | None | None. | |
-When used indoors or in an enclosed area | APF 10 | APF 10. | |
(v) Drivable saws | For tasks performed outdoors only: | ||
Use saw equipped with integrated water delivery system that continuously feeds water to the blade | None | None. | |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
(vi) Rig-mounted core saws or drills | Use tool equipped with integrated water delivery system that supplies water to cutting surface | None | None. |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
(vii) Handheld and stand-mounted drills (including impact and rotary hammer drills) | Use drill equipped with commercially available shroud or cowling with dust collection system | None | None. |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism | |||
Use a HEPA-filtered vacuum when cleaning holes | |||
(viii) Dowel drilling rigs for concrete | For tasks performed outdoors only: | ||
Use shroud around drill bit with a dust collection system. Dust collector must have a filter with 99% or greater efficiency and a filter-cleaning mechanism | APF 10 | APF 10. | |
Use a HEPA-filtered vacuum when cleaning holes | |||
(ix) Vehicle-mounted drilling rigs for rock and concrete | Use dust collection system with close capture hood or shroud around drill bit with a low-flow water spray to wet the dust at the discharge point from the dust collector | None | None. |
OR | |||
Operate from within an enclosed cab and use water for dust suppression on drill bit | None | None. | |
(x) Jackhammers and handheld powered chipping tools | Use tool with water delivery system that supplies a continuous stream or spray of water at the point of impact: | ||
-When used outdoors | None | APF 10. | |
-When used indoors or in an enclosed area | APF 10 | APF 10. | |
OR | |||
Use tool equipped with commercially available shroud and dust collection system | |||
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
Dust collector must provide the air flow recommended by the tool manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism: | |||
-When used outdoors | None | APF 10. | |
-When used indoors or in an enclosed area | APF 10 | APF 10. | |
(xi) Handheld grinders for mortar removal (i.e., tuckpointing) | Use grinder equipped with commercially available shroud and dust collection system | APF 10 | APF 25. |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
Dust collector must provide 25 cubic feet per minute (cfm) or greater of airflow per inch of wheel diameter and have a filter with 99% or greater efficiency and a cyclonic pre-separator or filter-cleaning mechanism | |||
(xii) Handheld grinders for uses other than mortar removal | For tasks performed outdoors only: Use grinder equipped with integrated water delivery system that continuously feeds water to the grinding surface | None | None. |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
OR | |||
Use grinder equipped with commercially available shroud and dust collection system | |||
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
Dust collector must provide 25 cubic feet per minute (cfm) or greater of airflow per inch of wheel diameter and have a filter with 99% or greater efficiency and a cyclonic pre-separator or filter-cleaning mechanism: | |||
-When used outdoors | None | None. | |
-When used indoors or in an enclosed area | None | APF 10. | |
(xiii) Walk-behind milling machines and floor grinders | Use machine equipped with integrated water delivery system that continuously feeds water to the cutting surface | None | None. |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
OR | |||
Use machine equipped with dust collection system recommended by the manufacturer | None | None. | |
Operate and maintain tool in accordance with manufacturer's instructions to minimize dust emissions | |||
Dust collector must provide the air flow recommended by the manufacturer, or greater, and have a filter with 99% or greater efficiency and a filter-cleaning mechanism | |||
When used indoors or in an enclosed area, use a HEPA-filtered vacuum to remove loose dust in between passes | |||
(xiv) Small drivable milling machines (less than half-lane) | Use a machine equipped with supplemental water sprays designed to suppress dust. Water must be combined with a surfactant | None | None. |
Operate and maintain machine to minimize dust emissions | |||
(xv) Large drivable milling machines (half-lane and larger) | For cuts of any depth on asphalt only: Use machine equipped with exhaust ventilation on drum enclosure and supplemental water sprays designed to suppress dust | None | None. |
Operate and maintain machine to minimize dust emissions | |||
For cuts of four inches in depth or less on any substrate: | |||
Use machine equipped with exhaust ventilation on drum enclosure and supplemental water sprays designed to suppress dust | None | None. | |
Operate and maintain machine to minimize dust emissions | |||
OR | |||
Use a machine equipped with supplemental water spray designed to suppress dust. Water must be combined with a surfactant | None | None. | |
Operate and maintain machine to minimize dust emissions | |||
(xvi) Crushing machines | Use equipment designed to deliver water spray or mist for dust suppression at crusher and other points where dust is generated (e.g., hoppers, conveyers, sieves/sizing or vibrating components, and discharge points) | None | None. |
Operate and maintain machine in accordance with manufacturer's instructions to minimize dust emissions | |||
Use a ventilated booth that provides fresh, climate-controlled air to the operator, or a remote control station | |||
(xvii) Heavy equipment and utility vehicles used to abrade or fracture silica-containing materials (e.g., hoe-ramming, rock ripping) or used during demolition activities involving silica-containing materials | Operate equipment from within an enclosed cab When employees outside of the cab are engaged in the task, apply water and/or dust suppressants as necessary to minimize dust emissions | None None | None. None. |
(xviii) Heavy equipment and utility vehicles for tasks such as grading and excavating but not including: Demolishing, abrading, or fracturing silica-containing materials | Apply water and/or dust suppressants as necessary to minimize dust emissions OR | None | None. |
When the equipment operator is the only employee engaged in the task, operate equipment from within an enclosed cab | None | None. |
Appendix A to § 1926.1153 -Methods of Sample Analysis
This This appendix specifies the procedures for analyzing air samples for respirable crystalline silica, as well as the quality control procedures that employers must ensure that laboratories use when performing an analysis required under 29 CFR 1926.1153 (d)(2)(v) . Employers must ensure that such a laboratory:
Appendix B to § 1926.1153 -Medical Surveillance Guidelines
Introduction
The purpose of this Appendix is to provide medical information and recommendations to aid physicians and other licensed health care professionals (PLHCPs) regarding compliance with the medical surveillance provisions of the respirable crystalline silica standard (29 CFR 1926.1153 ). Appendix B is for informational and guidance purposes only and none of the statements in Appendix B should be construed as imposing a mandatory requirement on employers that is not otherwise imposed by the standard.
Medical screening and surveillance allow for early identification of exposure-related health effects in individual employee and groups of employees, so that actions can be taken to both avoid further exposure and prevent or address adverse health outcomes. Silica-related diseases can be fatal, encompass a variety of target organs, and may have public health consequences when considering the increased risk of a latent tuberculosis (TB) infection becoming active. Thus, medical surveillance of silica-exposed employees requires that PLHCPs have a thorough knowledge of silica-related health effects.
This Appendix is divided into seven sections. Section 1 reviews silica-related diseases, medical responses, and public health responses. Section 2 outlines the components of the medical surveillance program for employees exposed to silica. Section 3 describes the roles and responsibilities of the PLHCP implementing the program and of other medical specialists and public health professionals. Section 4 provides a discussion of considerations, including confidentiality. Section 5 provides a list of additional resources and Section 6 lists references. Section 7 provides sample forms for the written medical report for the employee, the written medical opinion for the employer and the written authorization.
Silicosis is an irreversible, often disabling, and sometimes fatal fibrotic lung disease. Progression of silicosis can occur despite removal from further exposure. Diagnosis of silicosis requires a history of exposure to silica and radiologic findings characteristic of silica exposure. Three different presentations of silicosis (chronic, accelerated, and acute) have been defined. Accelerated and acute silicosis are much less common than chronic silicosis. However, it is critical to recognize all cases of accelerated and acute silicosis because these are life-threatening illnesses and because they are caused by substantial overexposures to respirable crystalline silica. Although any case of silicosis indicates a breakdown in prevention, a case of acute or accelerated silicosis implies current high exposure and a very marked breakdown in prevention.
In addition to silicosis, employees exposed to respirable crystalline silica, especially those with accelerated or acute silicosis, are at increased risks of contracting active TB and other infections (ATS 1997; Rees and Murray 2007). Exposure to respirable crystalline silica also increases an employee's risk of developing lung cancer, and the higher the cumulative exposure, the higher the risk (Steenland et al. 2001; Steenland and Ward 2014). Symptoms for these diseases and other respirable crystalline silica-related diseases are discussed below.
PLHCPs who manage silica medical surveillance programs should have a thorough understanding of the many silica-related diseases and health effects outlined in Section 1 of this Appendix. At each clinical encounter, the PLHCP should consider silica-related health outcomes, with particular vigilance for acute and accelerated silicosis. In this Section, the required components of medical surveillance under the respirable crystalline silica standard are reviewed, along with additional guidance and recommendations for PLHCPs performing medical surveillance examinations for silica-exposed employees.
Chest radiography is necessary to diagnose silicosis, monitor the progression of silicosis, and identify associated conditions such as TB. If the B reading indicates small opacities in a profusion of 1/0 or higher, the employee is to receive a recommendation for referral to a Board Certified Specialist in Pulmonary Disease or Occupational Medicine.
Once the medical surveillance examination is completed, the employer must ensure that the PLHCP explains to the employee the results of the medical examination and provides the employee with a written medical report within 30 days of the examination. The written medical report must contain a statement indicating the results of the medical examination, including any medical condition(s) that would place the employee at increased risk of material impairment to health from exposure to respirable crystalline silica and any medical conditions that require further evaluation or treatment. In addition, the PLHCP's written medical report must include any recommended limitations on the employee's use of respirators, any recommended limitations on the employee's exposure to respirable crystalline silica, and a statement that the employee should be examined by a Board Certified Specialist in Pulmonary Disease or Occupational medicine if the chest X-ray is classified as 1/0 or higher by the B Reader, or if referral to a Specialist is otherwise deemed appropriate by the PLHCP.
The PLHCP should discuss all findings and test results and any recommendations regarding the employee's health, worksite safety and health practices, and medical referrals for further evaluation, if indicated. In addition, it is suggested that the PLHCP offer to provide the employee with a complete copy of their examination and test results, as some employees may want this information for their own records or to provide to their personal physician or a future PLHCP. Employees are entitled to access their medical records.
Under the respirable crystalline silica standard, the employer must ensure that the PLHCP provides the employer with a written medical opinion within 30 days of the employee examination, and that the employee also gets a copy of the written medical opinion for the employer within 30 days. The PLHCP may choose to directly provide the employee a copy of the written medical opinion. This can be particularly helpful to employees, such as construction employees, who may change employers frequently. The written medical opinion can be used by the employee as proof of up-to-date medical surveillance. The following lists the elements of the written medical report for the employee and written medical opinion for the employer. (Sample forms for the written medical report for the employee, the written medical opinion for the employer, and the written authorization are provided in Section 7 of this Appendix.)
The information that is provided from the PLHCP to the employee and employer under the medical surveillance section of OSHA's respirable crystalline silica standard differs from that of medical surveillance requirements in previous OSHA standards. The standard requires two separate written communications, a written medical report for the employee and a written medical opinion for the employer. The confidentiality requirements for the written medical opinion are more stringent than in past standards. For example, the information the PLHCP can (and must) include in his or her written medical opinion for the employer is limited to: The date of the examination, a statement that the examination has met the requirements of this section, and any recommended limitations on the employee's use of respirators. If the employee provides written authorization for the disclosure of any limitations on the employee's exposure to respirable crystalline silica, then the PLHCP can (and must) include that information in the written medical opinion for the employer as well. Likewise, with the employee's written authorization, the PLHCP can (and must) disclose the PLHCP's referral recommendation (if any) as part of the written medical opinion for the employer. However, the opinion to the employer must not include information regarding recommended limitations on the employee's exposure to respirable crystalline silica or any referral recommendations without the employee's written authorization.
The standard also places limitations on the information that the Board Certified Specialist in Pulmonary Disease or Occupational Medicine can provide to the employer without the employee's written authorization. The Specialist's written medical opinion for the employer, like the PLHCP's opinion, is limited to (and must contain): The date of the examination and any recommended limitations on the employee's use of respirators. If the employee provides written authorization, the written medical opinion can (and must) also contain any limitations on the employee's exposure to respirable crystalline silica.
The PLHCP should discuss the implication of signing or not signing the authorization with the employee (in a manner and language that he or she understands) so that the employee can make an informed decision regarding the written authorization and its consequences. The discussion should include the risk of ongoing silica exposure, personal risk factors, risk of disease progression, and possible health and economic consequences. For instance, written authorization is required for a PLHCP to advise an employer that an employee should be referred to a Board Certified Specialist in Pulmonary Disease or Occupational Medicine for evaluation of an abnormal chest X-ray (B-reading 1/0 or greater). If an employee does not sign an authorization, then the employer will not know and cannot facilitate the referral to a Specialist and is not required to pay for the Specialist's examination. In the rare case where an employee is diagnosed with acute or accelerated silicosis, co-workers are likely to be at significant risk of developing those diseases as a result of inadequate controls in the workplace. In this case, the PLHCP and/or Specialist should explain this concern to the affected employee and make a determined effort to obtain written authorization from the employee so that the PLHCP and/or Specialist can contact the employer.
Finally, without written authorization from the employee, the PLHCP and/or Board Certified Specialist in Pulmonary Disease or Occupational Medicine cannot provide feedback to an employer regarding control of workplace silica exposure, at least in relation to an individual employee. However, the regulation does not prohibit a PLHCP and/or Specialist from providing an employer with general recommendations regarding exposure controls and prevention programs in relation to silica exposure and silica-related illnesses, based on the information that the PLHCP receives from the employer such as employees' duties and exposure levels. Recommendations may include increased frequency of medical surveillance examinations, additional medical surveillance components, engineering and work practice controls, exposure monitoring and personal protective equipment. For instance, more frequent medical surveillance examinations may be a recommendation to employers for employees who do abrasive blasting with silica because of the high exposures associated with that operation.
ACOEM's Code of Ethics and discussion is a good resource to guide PLHCPs regarding the issues discussed in this section (See Section 5 of this Appendix).
ACOEM Code of Ethics. Accessed at:http://www.acoem.org/codeofconduct.aspx
Raymond, L.W. and Wintermeyer, S. (2006) ACOEM evidenced-based statement on medical surveillance of silica-exposed workers: Medical surveillance of workers exposed to crystalline silica. J Occup Environ Med, 48, 95-101.
Tuberculosis Web page: http://www.cdc.gov/tb/default.htm
State TB Control Offices Web page: http://www.cdc.gov/tb/links/tboffices.htm
Tuberculosis Laws and Policies Web page: http://www.cdc.gov/tb/programs/laws/default.htm
CDC. (2013). Latent Tuberculosis Infection: A Guide for Primary Health Care Providers. Accessed at: http://www.cdc.gov/tb/publications/ltbi/pdf/targetedltbi.pdf
International Labour Office (ILO). (2011) Guidelines for the use of the ILO International Classification of Radiographs of Pneumoconioses, Revised edition 2011. Occupational Safety and Health Series No. 22: http://www.ilo.org/safework/info/publications/WCMS_168260/lang-en/index.htm
NIOSH B Reader Program Web page. (Information on interpretation of X-rays for silicosis and a list of certified B-readers). Accessed at: http://www.cdc.gov/niosh/topics/chestradiography/breader-info.html
NIOSH Guideline (2011). Application of Digital Radiography for the Detection and Classification of Pneumoconiosis. NIOSH publication number 2011-198. Accessed at: http://www.cdc.gov/niosh/docs/2011-198/
NIOSH Hazard Review (2002), Health Effects of Occupational Exposure to Respirable Crystalline Silica. NIOSH publication number 2002-129: Accessed at http://www.cdc.gov/niosh/docs/2002-129/
NIOSH Health Hazard Evaluations Programs. (Information on the NIOSH Health Hazard Evaluation (HHE) program, how to request an HHE and how to look up an HHE report). Accessed at: http://www.cdc.gov/niosh/hhe/
Occupational Health Program for Exposure to Crystalline Silica in the Industrial Sand Industry. National Industrial Sand Association, 2nd ed. 2010. Can be ordered at: http://www.sand.org/silica-occupational-health-program
Contacting OSHA: http://www.osha.gov/html/Feed_Back.html
OSHA's Clinicians Web page. (OSHA resources, regulations and links to help clinicians navigate OSHA's Web site and aid clinicians in caring for workers.) Accessed at: http://www.osha.gov/dts/oom/clinicians/index.html
OSHA's Safety and Health Topics Web page on Silica. Accessed at: http://www.osha.gov/dsg/topics/silicacrystalline/index.html
OSHA (2013). Spirometry Testing in Occupational Health Programs: Best Practices for Healthcare Professionals. (OSHA 3637-03 2013). Accessed at: http://www.osha.gov/Publications/OSHA3637.pdf
OSHA/NIOSH (2011). Spirometry: OSHA/NIOSH Spirometry InfoSheet (OSHA 3415-1-11). (Provides guidance to employers). Accessed at http://www.osha.gov/Publications/osha3415.pdf
OSHA/NIOSH (2011) Spirometry: OSHA/NIOSH Spirometry Worker Info. (OSHA 3418-3-11). Accessed at http://www.osha.gov/Publications/osha3418.pdf
Steenland, K. and Ward E. (2014). Silica: A lung carcinogen. CA Cancer J Clin, 64, 63-69. (This article reviews not only silica and lung cancer but also all the known silica-related health effects. Further, the authors provide guidance to clinicians on medical surveillance of silica-exposed workers and worker counselling on safety practices to minimize silica exposure.)
American Thoracic Society (ATS). Medical Section of the American Lung Association (1997). Adverse effects of crystalline silica exposure. Am J Respir Crit Care Med, 155, 761-765.
American Thoracic Society (ATS), Centers for Disease Control (CDC), Infectious Diseases Society of America (IDSA) (2005). Controlling Tuberculosis in the United States. Morbidity and Mortality Weekly Report (MMWR), 54(RR12), 1-81. Accessed at: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5412a1.htm
Brown, T. (2009). Silica exposure, smoking, silicosis and lung cancer-complex interactions. Occupational Medicine, 59, 89-95.
Halldin, C.N., Petsonk, E.L., and Laney, A.S. (2014). Validation of the International Labour Office digitized standard images for recognition and classification of radiographs of pneumoconiosis. Acad Radiol, 21, 305-311.
International Agency for Research on Cancer. (2012). Monographs on the evaluation of carcinogenic risks to humans: Arsenic, Metals, Fibers, and Dusts Silica Dust, Crystalline, in the Form of Quartz or Cristobalite. A Review of Human Carcinogens. Volume 100 C. Geneva, Switzerland: World Health Organization.
Jalloul, A.S. and Banks D.E. (2007). Chapter 23. The health effects of silica exposure. In: Rom, W.N. and Markowitz, S.B. (Eds). Environmental and Occupational Medicine, 4th edition. Lippincott, Williams and Wilkins, Philadelphia, 365-387.
Kramer, M.R., Blanc, P.D., Fireman, E., Amital, A., Guber, A., Rahman, N.A., and Shitrit, D. (2012). Artifical stone silicosis: Disease resurgence among artificial stone workers. Chest, 142, 419-424.
Laney, A.S., Petsonk, E.L., and Attfield, M.D. (2011). Intramodality and intermodality comparisons of storage phosphor computed radiography and conventional film-screen radiography in the recognition of small pneumonconiotic opacities. Chest, 140, 1574-1580.
Liu, Y., Steenland, K., Rong, Y., Hnizdo, E., Huang, X., Zhang, H., Shi, T., Sun, Y., Wu, T., and Chen, W. (2013). Exposure-response analysis and risk assessment for lung cancer in relationship to silica exposure: A 44-year cohort study of 34,018 workers. Am J Epi, 178, 1424-1433.
Liu, Y., Rong, Y., Steenland, K., Christiani, D.C., Huang, X., Wu, T., and Chen, W. (2014). Long-term exposure to crystalline silica and risk of heart disease mortality. Epidemiology, 25, 689-696.
Mazurek, G.H., Jereb, J., Vernon, A., LoBue, P., Goldberg, S., Castro, K. (2010). Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection-United States. Morbidity and Mortality Weekly Report (MMWR), 59(RR05), 1-25.
Miller, M.R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C.P., Gustafsson, P., Jensen, R., Johnson, D.C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O.F., Pellegrino, R., Viegi, G., and Wanger, J. (2005). American Thoracic Society/European Respiratory Society (ATS/ERS) Task Force: Standardisation of Spirometry. Eur Respir J, 26, 319-338.
National Toxicology Program (NTP) (2014). Report on Carcinogens, Thirteenth Edition. Silica, Crystalline (respirable Size). Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service. http://ntp.niehs.nih.gov/ntp/roc/content/profiles/silica.pdf
Occupational Safety and Health Administration/National Institute for Occupational Safety and Health (OSHA/NIOSH) (2012). Hazard Alert. Worker exposure to silica during hydraulic fracturing.
Occupational Safety and Health Administration/National Institute for Occupational Safety and Health (OSHA/NIOSH) (2015). Hazard alert. Worker exposure to silica during countertop manufacturing, finishing, and installation. (OSHA-HA-3768-2015).
Redlich, C.A., Tarlo, S.M., Hankinson, J.L., Townsend, M.C, Eschenbacher, W.L., Von Essen, S.G., Sigsgaard, T., Weissman, D.N. (2014). Official American Thoracic Society technical standards: Spirometry in the occupational setting. Am J Respir Crit Care Med; 189, 984-994.
Rees, D. and Murray, J. (2007). Silica, silicosis and tuberculosis. Int J Tuberc Lung Dis, 11(5), 474-484.
Shtraichman, O., Blanc, P.D., Ollech, J.E., Fridel, L., Fuks, L., Fireman, E., and Kramer, M.R. (2015). Outbreak of autoimmune disease in silicosis linked to artificial stone. Occup Med, 65, 444-450.
Slater, M.L., Welland, G., Pai, M., Parsonnet, J., and Banaei, N. (2013). Challenges with QuantiFERON-TB gold assay for large-scale, routine screening of U.S. healthcare workers. Am J Respir Crit Care Med, 188,1005-1010.
Steenland, K., Mannetje, A., Boffetta, P., Stayner, L., Attfield, M., Chen, J., Dosemeci, M., DeKlerk, N., Hnizdo, E., Koskela, R., and Checkoway, H. (2001). International Agency for Research on Cancer. Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: An IARC multicentre study. Cancer Causes Control, 12(9): 773-84.
Steenland, K. and Ward E. (2014). Silica: A lung carcinogen. CA Cancer J Clin, 64, 63-69.
Townsend, M.C. ACOEM Guidance Statement. (2011). Spirometry in the occupational health setting-2011 Update. J Occup Environ Med, 53, 569-584.
Three sample forms are provided. The first is a sample written medical report for the employee. The second is a sample written medical opinion for the employer. And the third is a sample written authorization form that employees sign to clarify what information the employee is authorizing to be released to the employer.
29 C.F.R. §1926.1153