Energy Conservation Program: Data Collection and Comparison With Forecasted Unit Sales of Five Lamp Types

Download PDF
Federal RegisterApr 7, 2016
81 Fed. Reg. 20261 (Apr. 7, 2016)

AGENCY:

Office of Energy Efficiency and Renewable Energy, Department of Energy.

ACTION:

Notice of data availability.

SUMMARY:

The U.S. Department of Energy (DOE) is informing the public of its collection of shipment data and creation of spreadsheet models to provide comparisons between actual and benchmark estimate unit sales of five lamp types (i.e., rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps) that are currently not subject to energy conservation standards. As the actual sales are not greater than 200 percent of the forecasted estimate for 2015 (i.e., the threshold triggering a rulemaking for an energy conservation standard) for rough service lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps, DOE has determined that no regulatory action pertaining to such lamps is necessary at this time. However, DOE will continue to track sales data for these exempted lamps. As discussed in the results under section IV of this document, the actual unit sales for vibration service lamps are 272.5 percent of the benchmark unit sales estimate. Therefore, an accelerated energy conservation standard rulemaking for vibration service lamps must be completed by December 31, 2016. Relating to this activity, DOE has prepared, and is making available on its Web site, a spreadsheet showing the comparisons of anticipated versus actual sales, as well as the model used to generate the original sales estimates.

DATES:

DOE has determined that an accelerated energy conservation standard rulemaking for vibration service lamps must be completed by December 31, 2016.

ADDRESSES:

The spreadsheet is available online at: https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=16.

FOR FURTHER INFORMATION CONTACT:

Ms. Lucy deButts, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies, EE-5B, 1000 Independence Avenue SW., Washington, DC 20585-0121. Telephone: (202) 287-1604. Email: five_lamp_types@ee.doe.gov.

Mr. Peter Cochran, U.S. Department of Energy, Office of the General Counsel, GC-33, 1000 Independence Avenue SW., Washington, DC 20585-0121. Telephone: (202) 586-9496. Email: peter.cochran@hq.doe.gov.

SUPPLEMENTARY INFORMATION:

Table of Contents

I. Background

II. Definitions

A. Rough Service Lamps

B. Vibration Service Lamps

C. Three-Way Incandescent Lamps

D. 2,601-3,300 Lumen General Service Incandescent Lamps

E. Shatter-Resistant Lamps

III. Comparison Methodology

IV. Comparison Results

A. Rough Service Lamps

B. Vibration Service Lamps

C. Three-Way Incandescent Lamps

D. 2,601-3,300 Lumen General Service Incandescent Lamps

E. Shatter-Resistant Lamps

V. Conclusion

VI. Review Under the National Environmental Policy Act of 1969

I. Background

The Energy Independence and Security Act of 2007 (EISA 2007; Pub. L. 110-140) was enacted on December 19, 2007. Among the requirements of subtitle B (Lighting Energy Efficiency) of title III of EISA 2007 were provisions directing DOE to collect, analyze, and monitor unit sales of five lamp types (i.e., rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps). In relevant part, section 321(a)(3)(B) of EISA 2007 amended section 325(l) of the Energy Policy and Conservation Act of 1975 (EPCA) by adding paragraph (4)(B), which generally directs DOE, in consultation with the National Electrical Manufacturers Association (NEMA), to: (1) Collect unit sales data for each of the five lamp types for calendar years 1990 through 2006 in order to determine the historical growth rate for each lamp type; and (2) construct a model for each of the five lamp types based on coincident economic indicators that closely match the historical annual growth rates of each lamp type to provide a neutral comparison benchmark estimate of future unit sales. (42 U.S.C. 6295(l)(4)(B)) Section 321(a)(3)(B) of EISA 2007 also amends section 325(l) of EPCA by adding paragraph (4)(C), which, in relevant part, directs DOE to collect unit sales data for calendar years 2010 through 2025, in consultation with NEMA, for each of the five lamp types. DOE must then: (1) Compare the actual lamp sales in that year with the benchmark estimate; (2) determine if the unit sales projection has been exceeded; and (3) issue the findings within 90 days of the end of the analyzed calendar year. (42 U.S.C. 6295(l)(4)(C))

On December 18, 2008, DOE issued a notice of data availability (NODA) for the Report on Data Collection and Estimated Future Unit Sales of Five Lamp Types (hereafter the “2008 analysis”), which was published in the Federal Register on December 24, 2008. 73 FR 79072. The 2008 analysis presented the 1990 through 2006 shipment data collected in consultation with NEMA, the spreadsheet model DOE constructed for each lamp type, and the benchmark unit sales estimates for 2010 through 2025. On April 4, 2011, DOE published a NODA in the Federal Register announcing the availability of updated spreadsheet models presenting the benchmark estimates from the 2008 analysis and the collected sales data from 2010 for the first annual comparison. 76 FR 18425. Similarly, DOE published NODAs in the Federal Register in the following four years announcing the updated spreadsheet models and sales data for the annual comparisons. 77 FR 16183 (March 20, 2012); 78 FR 15891 (March 13, 2013); 79 FR 15058 (March 18, 2014); 80 FR 13791 (March 17, 2015). This NODA presents the sixth annual comparison; specifically, section IV of this report compares the actual unit sales against benchmark unit sales estimates for 2015.

The notices and related documents for the 2008 analysis and successive annual comparisons, including this NODA, are available through the DOE Web site at: https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=16.

EISA 2007 also amends section 325(l) of EPCA by adding paragraphs (4)(D) through (4)(H), which state that if DOE finds that the unit sales for a given lamp type in any year between 2010 and 2025 exceed the benchmark estimate of unit sales by at least 100 percent (i.e., are greater than 200 percent of the anticipated sales), then DOE must take regulatory action to establish an energy conservation standard for such lamps. (42 U.S.C. 6295(l)(4)(D) through (H)) For 2,601-3,300 lumen general service incandescent lamps, DOE must adopt a statutorily prescribed energy conservation standard. For the other four types of lamps, the statute requires DOE to initiate an accelerated rulemaking to establish energy conservation standards. If the Secretary does not complete the accelerated rulemakings within one year from the end of the previous calendar year, there is a “backstop requirement” for each lamp type, which would establish energy conservation standard levels and related requirements by statute. Id.

As in the 2008 analysis and previous comparisons, DOE uses manufacturer shipments as a surrogate for unit sales in this NODA because manufacturer shipment data are tracked and aggregated by the trade organization, NEMA. DOE believes that annual shipments track closely with actual unit sales of these five lamp types, as DOE presumes that retailer inventories remain constant from year to year. DOE believes this is a reasonable assumption because the markets for these five lamp types have existed for many years, thereby enabling manufacturers and retailers to establish appropriate inventory levels that reflect market demand. In addition, increasing unit sales must eventually result in increasing manufacturer shipments. This is the same methodology presented in DOE's 2008 analysis and subsequent annual comparisons, and DOE did not receive any comments challenging this assumption or the general approach.

II. Definitions

A. Rough Service Lamps

Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a “rough service lamp.” A “rough service lamp” means a lamp that—(i) has a minimum of 5 supports with filament configurations that are C-7A, C-11, C-17, and C-22 as listed in Figure 6-12 of the 9th edition of the IESNA [Illuminating Engineering Society of North America] Lighting handbook, or similar configurations where lead wires are not counted as supports; and (ii) is designated and marketed specifically for “rough service” applications, with—(I) the designation appearing on the lamp packaging; and (II) marketing materials that identify the lamp as being for rough service. (42 U.S.C. 6291(30)(X))

As noted above, rough service incandescent lamps must have a minimum of five filament support wires (not counting the two connecting leads at the beginning and end of the filament), and must be designated and marketed for “rough service” applications. This type of incandescent lamp is typically used in applications where the lamp would be subject to mechanical shock or vibration while it is operating. Standard incandescent lamps have only two support wires (which also serve as conductors), one at each end of the filament coil. When operating (i.e., when the tungsten filament is glowing so hot that it emits light), a standard incandescent lamp's filament is brittle, and rough service applications could cause it to break prematurely. To address this problem, lamp manufacturers developed lamp designs that incorporate additional support wires along the length of the filament to ensure that it has support not just at each end, but at several other points as well. The additional support protects the filament during operation and enables longer operating life for incandescent lamps in rough service applications. Typical applications for these rough service lamps might include commercial hallways and stairwells, gyms, storage areas, and security areas.

B. Vibration Service Lamps

Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a “vibration service lamp.” A “vibration service lamp” means a lamp that—(i) has filament configurations that are C-5, C-7A, or C-9, as listed in Figure 6-12 of the 9th Edition of the IESNA Lighting Handbook or similar configurations; (ii) has a maximum wattage of 60 watts; (iii) is sold at retail in packages of 2 lamps or less; and (iv) is designated and marketed specifically for vibration service or vibration-resistant applications, with—(I) the designation appearing on the lamp packaging; and (II) marketing materials that identify the lamp as being vibration service only. (42 U.S.C. 6291(30)(AA))

The statute mentions three examples of filament configurations for vibration service lamps in Figure 6-12 of the IESNA Lighting Handbook, one of which, C-7A, is also listed in the statutory definition of “rough service lamp.” The definition of “vibration service lamp” requires that such lamps have a maximum wattage of 60 watts and be sold at a retail level in packages of two lamps or fewer. Vibration service lamps must be designated and marketed for vibration service or vibration-resistant applications. As the name suggests, this type of incandescent lamp is generally used in applications where the incandescent lamp would be subject to a continuous low level of vibration, such as in a ceiling fan light kit. In such applications, standard incandescent lamps without additional filament support wires may not achieve the full rated life, because the filament wire is brittle and would be subject to breakage at typical operating temperature. To address this problem, lamp manufacturers typically use a more malleable tungsten filament to avoid damage and short circuits between coils.

C. Three-Way Incandescent Lamps

Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a “3-way incandescent lamp.” A “3-way incandescent lamp” includes an incandescent lamp that—(i) employs 2 filaments, operated separately and in combination, to provide 3 light levels; and (ii) is designated on the lamp packaging and marketing materials as being a 3-way incandescent lamp. (42 U.S.C. 6291(30)(Y))

Three-way lamps are commonly found in wattage combinations such as 50, 100, and 150 watts or 30, 70, and 100 watts. These lamps use two filaments (e.g., a 30-watt and a 70-watt filament) and can be operated separately or together to produce three different lumen outputs (e.g., 305 lumens with one filament, 995 lumens with the other, or 1,300 lumens using the filaments together). When used in three-way sockets, these lamps allow users to control the light level. Three-way incandescent lamps are typically used in residential multi-purpose areas, where consumers may adjust the light level to be appropriate for the task they are performing.

D. 2,601-3,300 Lumen General Service Incandescent Lamps

The statute does not provide a definition of “2,601-3,300 Lumen General Service Incandescent Lamps;” however, DOE is interpreting this term to be a general service incandescent lamp that emits light between 2,601 and 3,300 lumens. These lamps are used in general service applications when high light output is needed.

A “general service incandescent lamp” means a standard incandescent or halogen type lamp that—(I) is intended for general service applications; (II) has a medium screw base; (III) has a lumen range of not less than 310 lumens and not more than 2,600 lumens or, in the case of a modified spectrum lamp, not less than 232 lumens and not more than 1,950 lumens; and (IV) is capable of being operated at a voltage range at least partially within 110 and 130 volts. (42 U.S.C. 6291(30)(D)(i)).

E. Shatter-Resistant Lamps

Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a “shatter-resistant lamp, shatter-proof lamp, or shatter-protected lamp.” “Shatter-resistant lamp, shatter-proof lamp, and shatter-protected lamp” mean a lamp that—(i) has a coating or equivalent technology that is compliant with NSF/ANSI 51 [National Sanitation Foundation/American National Standards Institute] and is designed to contain the glass if the glass envelope of the lamp is broken; and (ii) is designated and marketed for the intended application, with—(I) the designation on the lamp packaging; and (II) marketing materials that identify the lamp as being shatter-resistant, shatter-proof, or shatter-protected. (42 U.S.C. 6291(30)(Z)) Although the definition provides three names commonly used to refer to these lamps, DOE simply refers to them collectively as “shatter-resistant lamps.”

Shatter-resistant lamps incorporate a special coating designed to prevent glass shards from being dispersed if a lamp's glass envelope breaks. Shatter-resistant lamps incorporate a coating compliant with industry standard NSF/ANSI 51, “Food Equipment Materials,” and are labeled and marketed as shatter-resistant, shatter-proof, or shatter-protected. Some types of the coatings can also protect the lamp from breakage in applications subject to heat and thermal shock that may occur from water, sleet, snow, soldering, or welding.

NSF/ANSI 51 applies specifically to materials and coatings used in the manufacturing of equipment and objects destined for contact with foodstuffs.

III. Comparison Methodology

In the 2008 analysis, DOE reviewed each of the five sets of shipment data that was collected in consultation with NEMA and applied two curve fits to generate unit sales estimates for the five lamp types after calendar year 2006. One curve fit applied a linear regression to the historical data and extended that line into the future. The other curve fit applied an exponential growth function to the shipment data and projected unit sales into the future. For this calculation, linear regression treats the year as a dependent variable and shipments as the independent variable. The linear regression curve fit is modeled by minimizing the differences among the data points and the best curve-fit linear line using the least squares function. The exponential curve fit is also a regression function and uses the same least squares function to find the best fit. For some data sets, an exponential curve provides a better characterization of the historical data, and, therefore, a better projection of the future data.

The least squares function is an analytical tool that DOE uses to minimize the sum of the squared residual differences between the actual historical data points and the modeled value (i.e., the linear curve fit). In minimizing this value, the resulting curve fit will represent the best fit possible to the data provided.

For 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps, DOE found that the linear regression and exponential growth curve fits produced nearly the same estimates of unit sales (i.e., the difference between the two forecasted values was less than 1 or 2 percent). However, for rough service and vibration service lamps, the linear regression curve fit projected lamp unit sales would decline to zero for both lamp types by 2018. In contrast, the exponential growth curve fit projected a more gradual decline in unit sales, such that lamps would still be sold beyond 2018, and it was, therefore, considered the more realistic forecast. While DOE was satisfied that either the linear regression or exponential growth spreadsheet model generated a reasonable benchmark unit sales estimate for 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps, DOE selected the exponential growth curve fit for these lamp types for consistency with the selection made for rough service and vibration service lamps. DOE examines the benchmark unit sales estimates and actual sales for each of the five lamp types in the following section and also makes the comparisons available in a spreadsheet online: https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=16.

This selection is consistent with the previous annual comparisons. See DOE's 2008 forecast spreadsheet models of the lamp types for greater detail on the estimates.

IV. Comparison Results

A. Rough Service Lamps

For rough service lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2015 to be 4,967,000 units. The NEMA-provided shipment data reported shipments of 6,731,000 units in 2015. As this finding is only 135.5 percent of the estimate, DOE will continue to track rough service lamp sales data and will not initiate regulatory action for this lamp type at this time.

The percentages reported in this section are calculated by dividing the 2015 actual sales by the 2015 projected sales. Numbers less than one hundred percent indicate the actual sales are less than the projected sales, numbers greater than one hundred percent and less than or equal to two hundred percent indicate the actual sales exceed the projected sales somewhat, and numbers greater than two hundred percent indicate the actual sales are more than double the projected sales and a rulemaking must be initiated.

B. Vibration Service Lamps

For vibration service lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2015 to be 2,594,000 units. The NEMA-provided shipment data reported 7,071,000 vibration service lamp shipments in 2015, which is 272.5 percent of the benchmark estimate.

Section 321(a)(3)(B) of EISA 2007 in part amends paragraph 325(l)(4) of EPCA by adding paragraphs (D) through (H), which direct DOE to take regulatory action if the actual annual unit sales of any of the five lamp types are more than 200 percent of the predicted shipments (i.e., more than double the benchmark unit sales estimate). (42 U.S.C. 6295(l)(4)(D)-(H)) As the actual unit sales for vibration service lamps are 272.5 percent of the benchmark estimate for the 2015 calendar year, DOE must conduct an accelerated energy conservation standards rulemaking for vibration service lamps to be completed no later than December 31, 2016. If the Secretary does not complete the accelerated rulemaking in the allotted time, the statute provides a backstop requirement that becomes the regulatory standard for vibration service lamps. This backstop requirement would establish standards beginning one year after the date of issuance of this NODA, and would require vibration service lamps to: (1) Have a maximum 40-watt limitation and (2) be sold at retail only in a package containing one lamp.

The requirement to collect and model data for vibration service lamps shall terminate unless, as part of the rulemaking, the Secretary determines that continued tracking is necessary. If, however, the Secretary imposes a backstop requirement as a result of a failure to complete the accelerated rulemaking in accordance with the statute, the requirement to collect and model data for the applicable type of lamp shall continue for two years after the compliance date of the backstop requirement. (42 U.S.C. 6295(l)(4)(I)(i) and (ii))

C. Three-Way Incandescent Lamps

For 3-way incandescent lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2015 to be 48,603,000 units. The NEMA-provided shipment data reported shipments of 32,665,000 units in 2015. As this finding is only 67.2 percent of the estimate, DOE will continue to track 3-way incandescent lamp sales data and will not initiate regulatory action for this lamp type at this time.

D. 2,601-3,300 Lumen General Service Incandescent Lamps

For 2,601-3,300 lumen general service incandescent lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2015 to be 34,175,000 units. The NEMA-provided shipment data reported shipments of 4,049,000 units in 2015. As this finding is 11.8 percent of the estimate, DOE will continue to track 2,601-3,300 lumen general service incandescent lamp sales data and will not initiate regulatory action for this lamp type at this time.

E. Shatter-Resistant Lamps

For shatter-resistant lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2015 to be 1,675,000 units. The NEMA-provided shipment data reported shipments of 689,000 units in 2015. As this finding is only 41.1 percent of the estimate, DOE will continue to track shatter-resistant lamp sales data and will not initiate regulatory action for this lamp type at this time.

V. Conclusion

The shipments for rough service lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service incandescent lamps, and shatter-resistant lamps did not cross the statutory threshold for a standard. DOE will continue to monitor these four currently exempted lamp types and will assess 2016 sales by March 31, 2017, in order to determine whether an energy conservation standards rulemaking is required, consistent with 42 U.S.C. 6295(l)(4)(D) through (H). The actual unit sales for vibration service lamps are 272.5 of the benchmark unit sales estimate. Therefore, DOE will begin an accelerated energy conservation standard rulemaking for vibration service lamps that must be completed by December 31, 2016.

VI. Review Under the National Environmental Policy Act of 1969

DOE has determined that this proposed action falls into a class of actions that are categorically excluded from review under the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.) and DOE's implementing regulations at 10 CFR part 1021. Specifically, this proposed action would find that for vibration service lamps energy conservation standards would be appropriate. However, this proposed action would not establish energy conservation standards at this time, and, therefore, would not result in any environmental impacts. Thus, this action is covered by Categorical Exclusion A6 “Procedural rulemakings” under 10 CFR part 1021, subpart D. Accordingly, neither an environmental assessment nor an environmental impact statement is required.

Issued in Washington, DC, on March 28, 2016.

Kathleen B. Hogan,

Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency and Renewable Energy.

[FR Doc. 2016-07873 Filed 4-6-16; 8:45 am]

BILLING CODE 6450-01-P