Ex Parte Chen et alDownload PDFPatent Trial and Appeal BoardAug 28, 201713696437 (P.T.A.B. Aug. 28, 2017) Copy Citation UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO. 13/696,437 11/06/2012 Jing Chen GUH-176US 8611 56352 7590 08/28/2017 GLOBAL IP SERVICES 7285 Eagle Court Winton, CA 95388 EXAMINER MAPAR, BIJAN ART UNIT PAPER NUMBER 2128 MAIL DATE DELIVERY MODE 08/28/2017 PAPER Please find below and/or attached an Office communication concerning this application or proceeding. The time period for reply, if any, is set in the attached communication. PTOL-90A (Rev. 04/07) UNITED STATES PATENT AND TRADEMARK OFFICE ____________ BEFORE THE PATENT TRIAL AND APPEAL BOARD ____________ Ex parte JING CHEN, QINGQING WU, JIEXIN LUO, ZHAN CHAI, and XI WANG ____________ Appeal 2016-008734 Application 13/696,4371 Technology Center 2100 ____________ Before BRUCE R. WINSOR, JEREMY J. CURCURI, and SHARON FENICK, Administrative Patent Judges. WINSOR, Administrative Patent Judge. DECISION ON APPEAL Appellants appeal under 35 U.S.C. § 134(a) from the final rejection of claims 1–7, which constitute all the claims pending in this application. We have jurisdiction under 35 U.S.C. § 6(b). We reverse. 1 Appellants identify the real party in interest as the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences. App. Br. 3. Appeal 2016-008734 Application 13/696,437 2 STATEMENT OF THE CASE Appellants’ disclosed invention “relates to a modeling method of a SPICE[2] model series of a field effect transistor (FET), and specifically to a modeling method of a SPICE model series of a Silicon On Insulator (SOI) FET, belonging to the field of micro-electronic device modeling.” Spec. 1:4–6. Claim 1, which is illustrative, reads as follows: 1. A modeling method of a SPICE model series of a Silicon on Insulator (SOI) Field Effect Transistor (FET), comprising the following steps: 1) designing and fabricating a plurality of devices of a body leading-out structure and of different sizes, a plurality of devices of a floating structure and of different sizes, and a plurality of auxiliary devices only comprising body leading-out parts in the devices of a body leading-out structure; 2) measuring various electrical property data of the devices of a body leading-out structure, the devices of a floating structure, and the auxiliary devices respectively; 3) subtracting the electrical property data of the auxiliary devices of corresponding sizes from the electrical property data of all the devices of a body leading-out structure in the same test conditions, and recording the subtraction result as intermediate data; 4) extracting all model parameters of the devices of a body leading-out structure in a SPICE model equation of an SOI FET by using the intermediate data, to establish a first model; 5) extracting all model parameters of the devices of a body leading-out structure in the SPICE model equation of the 2 Simulation Program with Integrated Circuit Emphasis. SPICE, WIKIPEDIA, https://en.wikipedia.org/wiki/SPICE (last updated June 13, 2017; last visited Aug. 17, 2017). Appeal 2016-008734 Application 13/696,437 3 SOI FET by using the electrical property data of the auxiliary devices, to establish a second model; 6) writing a macro-model formed by the first model and the second model in a parallel connection, and establishing a SPICE model of the SOI FET of a body leading-out structure; and 7) based on the first model established in step 4) and by using the electrical property data of the devices of a floating structure, extracting all model parameters of devices without a body leading-out structure in the SPICE model equation of the SOI FET, so as to obtain a SPICE model of an SOI FET of a floating structure. The Examiner relies on the following prior art in rejecting the claims: Tsai US 2003/0055613 Al Mar. 20, 2003 Guldi et al. US 2009/0102501 Al Apr. 23, 2009 P. Su et al., A Body-Contact SOI MOSFET Model for Circuit Simulation, 1999 IEEE INTERNATIONAL SOI CONFERENCE 50 (Oct. 1999) (hereinafter “Su 1999”). Pin Su et al., BSIMPD: A Partial-Depletion SOI MOSFET Model for Deep-Submicron CMOS Designs, IEEE 2000 CUSTOM INTEGRATED CIRCUITS CONFERENCE 197 (2000) (hereinafter “Su 2000”). BSIM Group, BSIMSOIv4.4 MOSFET MODEL Users’ Manual, (Dept. of Elec. Eng’g and Comput. Sci., Univ. of Cal., Berkeley, 2010) (hereinafter “BSIMSOIv4.4”). Claims 1, 2, 3, and 7 stand rejected under 35 U.S.C. § 103(a)3 as being unpatentable over Guldi et al. (hereinafter “Guldi”), Tsai, Su 1999, and Su 2000. See Final Act. 5–11. 3 All rejections are under the provisions of 35 U.S.C. in effect prior to the effective date of the Leahy-Smith America Invents Act of 2011. Final Act 2. Appeal 2016-008734 Application 13/696,437 4 Claims 4, 5, and 6 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over Guldi, Tsai, Su 1999, Su 2000, and BSIMSOIv4.4. See Final Act. 11–14. Rather than repeat the arguments here, we refer to the Briefs (“App. Br.” filed Dec. 03, 2015; “Reply Br.” filed Sept. 21, 2016) and the Specification (“Spec.” filed Nov. 06, 2012) for the positions of Appellants and the Final Office Action (“Final Act.” mailed June 05, 2015) and Answer (“Ans.” mailed July 22, 2016) for the reasoning, findings, and conclusions of the Examiner. ISSUE Appellants’ arguments raise the following dispositive issue:4 Does the Examiner err in finding Guldi, teaches or suggests “measuring various electrical property data of the devices of a body leading-out structure, the devices of a floating structure, and the auxiliary devices respectively,” as recited in step 2 of claim 1? ANALYSIS The Examiner finds Guldi teaches step 2 of claim 1. Final Act. 6 (citing Guldi ¶¶ 32–33, 38). The Examiner explains, in pertinent part, that the “Examiner is interpreting measuring electrical property data to include detecting leakage current paths.” Id. (citing Guldi ¶ 38). Appellants contend the Examiner errs because the functions described in the passages of Guldi relied on by the Examiner are not the same as those 4 Appellants’ arguments raise additional issues. Because the identified issue is dispositive of the appeal, we do not reach the additional issues. Appeal 2016-008734 Application 13/696,437 5 described in step 2 of claim 1. See App. Br. 14–15; Reply Br. 3. In particular, the purpose, i.e., function, of step 2 is “to get various electrical property data of the devices of a body leading-out structure, the devices of a floating structure, and the auxiliary devices measured respectively, for further establishing models by using the corresponding model equation.” App. Br. 14–15. Step 2 of Appellants’ invention accomplishes this function by measuring the electrical property data of the various devices. App. Br. 15. The function performed by Guldi, on the other hand, is “detecting a defect during semiconductor processing, and for e-beam testing of dislocations, pipes, and electrical leakage.” Id. We agree with Appellants. During prosecution claims are to be given their broadest reasonable interpretation consistent with the Specification, In re Am. Acad. of Sci. Tech. Ctr., 367 F.3d 1359, 1364 (Fed. Cir. 2004), without importing limitations into the claims from the Specification, In re Van Geuns, 988 F.2d 1181, 1184 (Fed. Cir. 1993). We construe the phrase “electrical property data of the devices.” In the context of claim 1, “electrical property data of the devices” is electrical data that is suitable for use in the equations of a SPICE model. See Claim 1, steps 4–7. Appellants’ Specification is consistent with this construction: “Various AC electrical properties and DC electrical properties, including Cgg_Vgs, Cgc_Vgs_Vbs, Ids_Vgs_Vbs, Ids_Vds_Vgs, and Ids_Vgs_Vds, of the foregoing three devices are respectively measured by using a semiconductor parameter measurement instrument.” Spec. 6:1–3; see also BSIMSOIv4.4 at 66–86. “Model parameters are extracted from the [electrical property] data of the auxiliary devices by using a proper SPICE model equation . . . to establish a second model.” Spec. 7:9–11. Appeal 2016-008734 Application 13/696,437 6 Accordingly, we conclude the broadest reasonable interpretation of “electrical property data of the devices” is electrical data that is suitable for use in the equations of a SPICE model. The Examiner relies on Guldi’s detection of current leakage paths, e.g., dislocations and/or pipes, as teaching measuring “electrical property data of the devices.” Final Act. 6 (citing Guldi ¶ 38). However, Guldi detects current leakage paths by examining devices being tested with an electron beam of an electron beam microscope. See Guldi ¶¶ 33, 38), Fig. 8 (items 806, 808). Although it is true that electron beam examination of devices relies on electrical characteristics of the devices (Guldi ¶ 38, Fig. 8 (item 846), Guldi does not teach, and the Examiner does not explain, how the detection of dislocations and pipes by an electron beam microscope produces electrical data that is suitable for use in the equations of a SPICE model. We conclude the Examiner has given “electrical property data of the devices” an unreasonably broad construction. Given our corrected construction, we do not sustain the rejection of claim 1 and claims 2–7, which depend from claim 1. DECISION The decision of the Examiner to reject claims 1–7 is reversed. REVERSED Notice of References Cited Application/Control No. 13/696,437 Applicant(s)/Patent Under Reexamination Chen, et al. Examiner Appeal No. 2016-008734 Art Unit 2128 Page 1 of 1 U.S. PATENT DOCUMENTS * Document Number Country Code-Number-Kind Code Date MM-YYYY Name Classification A US- 707/5 B US- C US- D US- E US- F US- G US- H US- I US- J US- K US- L US- M US- FOREIGN PATENT DOCUMENTS * Document Number Country Code-Number-Kind Code Date MM-YYYY Country Name Classification N O P Q R S T NON-PATENT DOCUMENTS * Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) U SPICE, WIKIPEDIA, https://en.wikipedia.org/wiki/SPICE (last updated June 13, 2017; last visited Aug.17, 2017). V W X *A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).) Dates in MM-YYYY format are publication dates. Classifications may be US or foreign. U.S. Patent and Trademark Office PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. SPICE 1 Original author(s) Laurence Nagel Initial release 1973 Written in Fortran Type Electronic circuit simulation License Public-domain software SPICE 2 Initial release 1975 Stable release 2G.6 / 1983 Written in Fortran Type Electronic circuit simulation License Public-domain software Website https://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm SPICE 3 Original author(s) Thomas Quarles Initial release 1989 Stable release 3f.5 / July 1993 Written in C Type Electronic circuit simulation License BSD license Website https://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm SPICE From Wikipedia, the free encyclopedia SPICE (Simulation Program with Integrated Circuit Emphasis)[1][2] is a general-purpose, open source analog electronic circuit simulator. It is a program used in integrated circuit and board-level design to check the integrity of circuit designs and to predict circuit behavior. Contents ◾ 1 Introduction ◾ 2 Origins ◾ 3 Transient analysis ◾ 3.1 Initial conditions for transient analysis ◾ 4 Adoption ◾ 5 Program features and structure ◾ 5.1 Analyses ◾ 5.2 Device models ◾ 5.3 Input and output: Netlists, schematic capture and plotting ◾ 6 See also ◾ 7 References ◾ 8 External links ◾ 8.1 Histories, original papers Page 1 of 6SPICE - Wikipedia 8/17/2017https://en.wikipedia.org/wiki/SPICE Introduction Unlike board-level designs composed of discrete parts, it is not practical to breadboard integrated circuits before manufacture. Further, the high costs of photolithographic masks and other manufacturing prerequisites make it essential to design the circuit to be as close to perfect as possible before the integrated circuit is first built. Simulating the circuit with SPICE is the industry-standard way to verify circuit operation at the transistor level before committing to manufacturing an integrated circuit. Board-level circuit designs can often be breadboarded for testing. Even with a breadboard, some circuit properties may not be accurate compared to the final printed wiring board, such as parasitic resistances and capacitances. These parasitic components can often be estimated more accurately using SPICE simulation. Also, designers may want more information about the circuit than is available from a single mock-up. For instance, circuit performance is affected by component manufacturing tolerances. In these cases it is common to use SPICE to perform Monte Carlo simulations of the effect of component variations on performance, a task which is impractical using calculations by hand for a circuit of any appreciable complexity. Circuit simulation programs, of which SPICE and derivatives are the most prominent, take a text netlist describing the circuit elements (transistors, resistors, capacitors, etc.) and their connections, and translate[3] this description into equations to be solved. The general equations produced are nonlinear differential algebraic equations which are solved using implicit integration methods, Newton's method and sparse matrix techniques. Origins SPICE was developed at the Electronics Research Laboratory of the University of California, Berkeley by Laurence Nagel with direction from his research advisor, Prof. Donald Pederson. SPICE1 was largely a derivative of the CANCER program,[4] which Nagel had worked on under Prof. Ronald Rohrer. CANCER was an acronym for "Computer Analysis of Nonlinear Circuits, Excluding Radiation," a hint to Berkeley's liberalism in the 1960s:[5] at these times many circuit simulators were developed under the United States Department of Defense contracts that required the capability to evaluate the radiation hardness of a circuit. When Nagel's original advisor, Prof. Rohrer, left Berkeley, Prof. Pederson became his advisor. Pederson insisted that CANCER, a proprietary program, be rewritten enough that restrictions could be removed and the program could be put in the public domain.[6] SPICE1 was first presented at a conference in 1973.[7] SPICE1 was coded in FORTRAN and used nodal analysis to construct the circuit equations. Nodal analysis has limitations in representing inductors, floating voltage sources and the various forms of controlled sources. SPICE1 had relatively few circuit elements available and used a fixed-timestep transient analysis. The real popularity of SPICE started with SPICE2[8] in 1975. SPICE2, also coded in FORTRAN, was a much-improved program with more circuit elements, variable timestep transient analysis using either the trapezoidal (second order Adams-Moulton method) or the Gear integration method (also known as BDF), equation formulation via modified nodal analysis[9] (avoiding the limitations of nodal analysis), and an innovative FORTRAN-based memory allocation system developed by another graduate student, Ellis Cohen. The last FORTRAN version of SPICE was 2G.6 in 1983. SPICE3[10] was developed by Thomas Quarles (with A. Richard Newton as advisor) in 1989. It is written in C, uses the same netlist syntax, and added X Window System plotting. As an early public domain software program with source code available,[11] SPICE was widely distributed and used. Its ubiquity became such that "to SPICE a circuit" remains synonymous with circuit simulation.[12] SPICE source code was from the beginning distributed by UC Berkeley for a nominal charge (to cover the cost of magnetic tape). The license originally included distribution restrictions for countries not considered friendly to the USA, but the source code is currently covered by the BSD license. Transient analysis Since transient analysis is dependent on time, it uses different analysis algorithms, control options with different convergence- related issues and different initialization parameters than DC analysis. However, since a transient analysis first performs a DC operating point analysis (unless the UIC option is specified in the .TRAN statement), most of the DC analysis algorithms, control options, and initialization and convergence issues apply to transient analysis. Page 2 of 6SPICE - Wikipedia 8/17/2017https://en.wikipedia.org/wiki/SPICE Initial conditions for transient analysis Some circuits, such as oscillators or circuits with feedback, do not have stable operating point solutions. For these circuits, either the feedback loop must be broken so that a DC operating point can be calculated or the initial conditions must be provided in the simulation input. The DC operating point analysis is bypassed if the UIC parameter is included in the .TRAN statement. If UIC is included in the .TRAN statement, a transient analysis is started using node voltages specified in an .IC statement. If a node is set to 5 V in a .IC statement, the value at that node for the first time point (time 0) is 5 V. You can use the .OP statement to store an estimate of the DC operating point during a transient analysis. .TRAN 1ns 100ns UIC .OP 20ns The .TRAN statement UIC parameter in the above example bypasses the initial DC operating point analysis. The .OP statement calculates transient operating point at t = 20 ns during the transient analysis. Although a transient analysis might provide a convergent DC solution, the transient analysis itself can still fail to converge. In a transient analysis, the error message "internal timestep too small" indicates that the circuit failed to converge. The convergence failure might be due to stated initial conditions that are not close enough to the actual DC operating point values. Adoption SPICE inspired and served as a basis for many other circuit simulation programs, in academia, in industry, and in commercial products. The first commercial version of SPICE was ISPICE,[13] an interactive version on a timeshare service, National CSS. The most prominent commercial versions of SPICE include HSPICE (originally commercialized by Shawn and Kim Hailey of Meta Software, but now owned by Synopsys) and PSPICE (now owned by Cadence Design Systems). The academic spinoffs of SPICE include XSPICE, developed at Georgia Tech, which added mixed analog/digital "code models" for behavioral simulation, and Cider (previously CODECS, from UC Berkeley/Oregon State Univ.) which added semiconductor device simulation. The integrated circuit industry adopted SPICE quickly, and until commercial versions became well developed many IC design houses had proprietary versions of SPICE.[14] Today a few IC manufacturers, typically the larger companies, have groups continuing to develop SPICE-based circuit simulation programs. Among these are ADICE at Analog Devices, LTspice at Linear Technology (available to the public as freeware), Mica at Freescale Semiconductor and TINA at Texas Instruments. Similarly to Linear Technology, Texas Instruments makes available a freeware Windows version of the TINA software[15] (called TINA-TI[16]), which also includes their version of SPICE and comes preloaded with models for the company's integrated circuits.[17][18] Analog Devices offers a similar free tool called ADIsimPE (based on the SIMetrix/SIMPLIS[19] implementation of SPICE).[20] Other companies maintain internal circuit simulators which are not directly based upon SPICE, among them PowerSpice at IBM, TITAN at Infineon Technologies, Lynx at Intel Corporation, and Pstar at NXP Semiconductor. The birth of SPICE was named an IEEE Milestone in 2011; the entry mentions that SPICE "evolved to become the worldwide standard integrated circuit simulator."[21] Program features and structure SPICE became popular because it contained the analyses and models needed to design integrated circuits of the time, and was robust enough and fast enough to be practical to use.[22] Precursors to SPICE often had a single purpose: The BIAS[23] program, for example, did simulation of bipolar transistor circuit operating points; the SLIC[24] program did only small-signal analyses. SPICE combined operating point solutions, transient analysis, and various small-signal analyses with the circuit elements and device models needed to successfully simulate many circuits. Analyses SPICE2 included these analyses: ◾ AC analysis (linear small-signal frequency domain analysis) ◾ DC analysis (nonlinear quiescent point calculation) Page 3 of 6SPICE - Wikipedia 8/17/2017https://en.wikipedia.org/wiki/SPICE ◾ DC transfer curve analysis (a sequence of nonlinear operating points calculated while sweeping an input voltage or current, or a circuit parameter) ◾ Noise analysis (a small signal analysis done using an adjoint matrix technique which sums uncorrelated noise currents at a chosen output point) ◾ Transfer function analysis (a small-signal input/output gain and impedance calculation) ◾ Transient analysis (time-domain large-signal solution of nonlinear differential algebraic equations) Since SPICE is generally used to model nonlinear circuits, the small signal analyses are necessarily preceded by a quiescent point calculation at which the circuit is linearized. SPICE2 also contained code for other small-signal analyses: sensitivity analysis, pole-zero analysis, and small-signal distortion analysis. Analysis at various temperatures was done by automatically updating semiconductor model parameters for temperature, allowing the circuit to be simulated at temperature extremes. Other circuit simulators have since added many analyses beyond those in SPICE2 to address changing industry requirements. Parametric sweeps were added to analyze circuit performance with changing manufacturing tolerances or operating conditions. Loop gain and stability calculations were added for analog circuits. Harmonic balance or time-domain steady state analyses were added for RF and switched-capacitor circuit design. However, a public-domain circuit simulator containing the modern analyses and features needed to become a successor in popularity to SPICE has not yet emerged.[22] It is very important to use appropriate analyses with carefully chosen parameters. For example, application of linear analysis to nonlinear circuits should be justified separately. Also, application of transient analysis with default simulation parameters can lead to qualitatively wrong conclusions on circuit dynamics.[25] Device models SPICE2 included many semiconductor device compact models: three levels of MOSFET model, a combined Ebers–Moll and Gummel-Poon bipolar model, a JFET model, and a model for a junction diode. In addition, it had many other elements: resistors, capacitors, inductors (including coupling), independent voltage and current sources, ideal transmission lines, active components and voltage and current controlled sources. SPICE3 added more sophisticated MOSFET models, which were required due to advances in semiconductor technology. In particular, the BSIM family of models were added, which were also developed at UC Berkeley. Commercial and industrial SPICE simulators have added many other device models as technology advanced and earlier models became inadequate. To attempt standardization of these models so that a set of model parameters may be used in different simulators, an industry working group was formed, the Compact Model Council,[26] to choose, maintain and promote the use of standard models. The standard models today include BSIM3 (http://www-device.eecs.berkeley.edu/bsim/? page=BSIM3), BSIM4 (http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4), BSIMSOI (http://www- device.eecs.berkeley.edu/bsim/?page=BSIMSOI), PSP (http://pspmodel.asu.edu/), HICUM (http://www.iee.et.tu- dresden.de/iee/eb/hic_new/hic_start.html), and MEXTRAM (http://mextram.ewi.tudelft.nl/). Input and output: Netlists, schematic capture and plotting SPICE2 took a text netlist as input and produced line-printer listings as output, which fit with the computing environment in 1975. These listings were either columns of numbers corresponding to calculated outputs (typically voltages or currents), or line-printer character "plots". SPICE3 retained the netlist for circuit description, but allowed analyses to be controlled from a command-line interface similar to the C shell. SPICE3 also added basic X plotting, as UNIX and engineering workstations became common. Vendors and various free software projects have added schematic capture front-ends to SPICE, allowing a schematic diagram of the circuit to be drawn and the netlist to be automatically generated. Also, graphical user interfaces were added for selecting the simulations to be done and manipulating the voltage and current output vectors. In addition, very capable graphing utilities have been added to see waveforms and graphs of parametric dependencies. Several free versions of these extended programs are available, some as introductory limited packages, and some without restrictions. See also ◾ Comparison of EDA Software Page 4 of 6SPICE - Wikipedia 8/17/2017https://en.wikipedia.org/wiki/SPICE ◾ List of free electronics circuit simulators ◾ Input Output Buffer Information Specification (IBIS) ◾ Transistor models References 1. Nagel, L. W, and Pederson, D. O., SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973 2. Nagel, Laurence W., SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memorandum No. ERL- M520, University of California, Berkeley, May 1975 3. Warwick, Colin (May 2009). "Everything you always wanted to know about SPICE* (*But were afraid to ask)" (http://www.nutwooduk.co.uk/pdf/Issue82.PDF#page=27) (PDF). EMC Journal. Nutwood UK Limited (82): 27 –29. ISSN 1748-9253 (https://www.worldcat.org/issn/1748-9253). 4. Nagel, L. W. & Rohrer, R. A. (August 1971). "Computer Analysis of Nonlinear Circuits, Excluding Radiation" (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1050166). IEEE Journal of Solid State Circuits. SC –6: 166–182. doi:10.1109/JSSC.1971.1050166 (https://doi.org/10.1109%2FJSSC.1971.1050166). 5. Life of SPICE (http://www.designers-guide.org/Perspective/life-of-spice.pdf) Archived (https://web.archive.org/web/20120204190147/http://www.designers-guide.org/Perspective/life-of-spice.pdf) February 4, 2012, at the Wayback Machine. 6. Perry, T. (June 1998). "Donald O. Pederson". IEEE Spectrum. 35: 22–27. doi:10.1109/6.681968 (https://doi.org/10.1109%2F6.681968). 7. 2nd spice1 ref 8. 2nd spice2 ref 9. Ho, Ruehli, and Brennan (April 1974). "The Modified Nodal Approach to Network Analysis" (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1084079). Proc. 1974 Int. Symposium on Circuits and Systems, San Francisco. pp. 505–509. 10. Quarles, Thomas L., Analysis of Performance and Convergence Issues for Circuit Simulation, Memorandum No. UCB/ERL M89/42, University of California, Berkeley, Apr. 1989. 11. history-of-spice (http://www.allaboutcircuits.com/textbook/reference/chpt-7/history-of-spice/) Archived (https://web.archive.org/web/20161009084508/http://www.allaboutcircuits.com/textbook/reference/chpt-7/history-of- spice/) October 9, 2016, at the Wayback Machine. on allaboutcircuits.com "The origin of SPICE traces back to another circuit simulation program called CANCER. Developed by professor Ronald Rohrer of U.C. Berkeley along with some of his students in the late 1960’s, CANCER continued to be improved through the early 1970’s. When Rohrer left Berkeley, CANCER was re-written and re-named to SPICE, released as version 1 to the public domain in May of 1972. Version 2 of SPICE was released in 1975 (version 2g6—the version used in this book—is a minor revision of this 1975 release). Instrumental in the decision to release SPICE as a public-domain computer program was professor Donald Pederson of Berkeley, who believed that all significant technical progress happens when information is freely shared. I for one thank him for his vision." 12. Pescovitz, David (2002-05-02). "1972: The release of SPICE, still the industry standard tool for integrated circuit design" (http://www.coe.berkeley.edu/labnotes/0502/history.html). Lab Notes: Research from the Berkeley College of Engineering. Retrieved 2007-03-10. 13. Vladimirescu, Andrei, SPICE -- The Third Decade, Proc. 1990 IEEE Bipolar Circuits and Technology Meeting, Minneapolis, Sept. 1990, pp. 96–101 14. K. S. Kundert, The Designer’s Guide to SPICE and Spectre, Kluwer. Academic Publishers, Boston , 1995 15. TINA - Circuit Simulator for Analog, Digital, MCU & Mixed Circuit Simulation (http://www.tina.com/) Archived (https://web.archive.org/web/20161105090338/http://www.tina.com/) November 5, 2016, at the Wayback Machine. 16. SPICE-Based Analog Simulation Program - TINA-TI - TI Software Folder (http://www.ti.com/tool/tina-ti) Archived (https://web.archive.org/web/20161019062912/http://www.ti.com/tool/tina-ti) October 19, 2016, at the Wayback Machine. 17. Art Kay (2012). Operational Amplifier Noise: Techniques and Tips for Analyzing and Reducing Noise (https://books.google.com/books?id=0_PkTgqJD3kC&pg=PA41). Elsevier. p. 41. ISBN 978-0-08-094243-8. 18. Ron Mancini (2012). Op Amps for Everyone (https://books.google.com/books?id=0J6GtAlcHUcC&pg=PA162). Newnes. p. 162. ISBN 978-0-12-394406-1. 19. SIMertrix/SIMPLIS (http://www.simetrix.co.uk/site/simetrix-simplis.html) Archived (http://arquivo.pt/wayback/20160517092453/http://www.simetrix.co.uk/site/simetrix-simplis.html) May 17, 2016, at the Portuguese Web Archive Page 5 of 6SPICE - Wikipedia 8/17/2017https://en.wikipedia.org/wiki/SPICE 20. [1] (http://www.analog.com/en/content/adisimpe/fca.html) Archived (https://web.archive.org/web/20140706082430/http://www.analog.com/en/content/adisimpe/fca.html) July 6, 2014, at the Wayback Machine. 21. "List of IEEE Milestones" (http://www.ieeeghn.org/wiki/index.php/Milestones:List_of_IEEE_Milestones). IEEE Global History Network. IEEE. Retrieved 4 August 2011. 22. Nagel, L., Is it Time for SPICE4? (http://www.cs.sandia.gov/nacdm/talks/Nagal_Larry_NACDM2004.pdf) Archived (https://web.archive.org/web/20060926034314/http://www.cs.sandia.gov/nacdm/talks/Nagal_Larry_NACDM2004.pdf) September 26, 2006, at the Wayback Machine., 2004 Numerical Aspects of Device and Circuit Modeling Workshop, June 23–25, 2004, Santa Fe, New Mexico. Retrieved on 2007-11-10 23. McCalla and Howard (February 1971). "BIAS-3 – A program for nonlinear D.C. analysis of bipolar transistor circuits" (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1050153). IEEE J. of Solid State Circuits. 6 (1): 14–19. doi:10.1109/JSSC.1971.1050153 (https://doi.org/10.1109%2FJSSC.1971.1050153). 24. Idleman, Jenkins, McCalla and Pederson (August 1971). "SLIC—a simulator for linear integrated circuits" (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1050168). IEEE J. of Solid State Circuits. 6 (4): 188 –203. doi:10.1109/JSSC.1971.1050168 (https://doi.org/10.1109%2FJSSC.1971.1050168). 25. Bianchi, Giovanni (2015). "Limitations of PLL simulation: hidden oscillations in SPICE analysis". arXiv:1506.02484 (https://arxiv.org/abs/1506.02484) . 26. "CMC - Compact Model Council" (https://web.archive.org/web/20110511071827/http://www.geia.org/index.asp? bid=597). GEIA. Archived from the original (http://www.geia.org/index.asp?bid=597) on May 11, 2011. External links Histories, original papers ◾ The original SPICE1 paper (http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html) ◾ L. W. Nagel's dissertation (SPICE2) (http://www.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html) ◾ Thomas Quarles' dissertation (SPICE3) (http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/1216.html) ◾ A brief history of SPICE (http://www.ecircuitcenter.com/SpiceTopics/History.htm) ◾ SPICE2 and SPICE3 at UC Berkeley (http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm) ◾ Cider at UC Berkeley (http://embedded.eecs.berkeley.edu/pubs/downloads/cider/index.htm) Retrieved from "https://en.wikipedia.org/w/index.php?title=SPICE&oldid=785382533" ◾ This page was last edited on 13 June 2017, at 07:02. ◾ Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Page 6 of 6SPICE - Wikipedia 8/17/2017https://en.wikipedia.org/wiki/SPICE Copy with citationCopy as parenthetical citation